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Abstract
Following the Gibbs approach a general electrostatic model of heterogeneous
systems with non-homogeneous interfaces is proposed. The intrinsic surface
polarization is taken into account through the introduction of a surface dielectric
constant and the electrostatic boundary conditions are generalized as two-
dimensional Poisson equations. This model is applied to analysis of the
electrostatic potential of charged defects on a semiconductor surface. As a
result, a good theoretical fit of the experimental data is obtained. The fitting
value of the surface dielectric constant is in good agreement with its theoretical
estimation in the framework of the Gibbs approach.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The present paper offers an approach to the analysis of point charge potential distribution at a
semiconductor surface strictly based on the Gibbs excess model of heterogeneous systems [1].
The term ‘heterogeneous media’ is used in the literature to denote material systems of various
bulk phases divided by surfaces. Actually, the so-called surfaces do not exist, but correspond to
nanoscopic transition zones in the real systems where the bulk material characteristics change
sharply [2, 3]. A substantial problem with such a macroscopic model is the practically unknown
distribution of the phenomenological characteristics (e.g. dielectric permittivity, refraction
index, viscosity coefficient, etc) in the transition zone. For the case considered herein, this
problem can be exemplified by the Maxwell equation ∇ · D = ρ, where the unknown space-
dependent dielectric tensor components εi j(x, y, z) defining the electric displacement field
D = ε0ε · E; E = −∇ϕ make the entire mathematical model unsolvable. The traditional
approach to electrostatics treats the real heterogeneous system as homogeneous coexisting
bulk (3D) phases divided by boundaries, i.e. by surfaces, considered also as homogeneous
(2D) phases. The benefit of this modelling is that the dielectric constant of a homogeneous
phase is constant, thus making possible the solution of the Maxwell equation in the bulk,
i.e. ε0∇ · ε · E → ε0ε∇ · E = ρ (see equations (6), (7)). However, a new problem related to
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the so-called boundary conditions arises, namely how to model the distribution at the surface.
In electrostatics, this modelling concerns the jump of the normal component of the electric
displacement field. It takes the form D+n − D−n = ρs where ‘+’ and ‘−’ denote the field
on both sides of the surface. This boundary condition is derived from the Maxwell equation
applying the Gauss theorem at the boundary [4]. Special attention should be paid here to
the interpretation of the surface charge density ρs. Usually, ρs (defined simply as the surface
charge per unit area, by analogy to the bulk charge density ρ) is thought of as an actual net
charge density but, as will be clearly shown below, ρs is an excess quantity. The concept
of excess quantities, originally introduced by Gibbs for restoring the real amounts of matter,
energy, etc in an idealized system, has been exclusively employed in the thermodynamic
analysis of surfaces [2]. At the beginning of the 20th century the study of the dynamics
of dispersed systems (capillary waves, convection of bubbles, droplets, etc [5]) showed the
need for generalization of the traditional boundary conditions, accounting (by analogy with
bulk phases) for specific surface characteristics such as surface viscosity, surface diffusion
coefficient, elasticity, etc.

This generalization formally results in the appearance of an additional term in the boundary
condition, namely D+n − D−n + ∇ · Ds = ρs, transforming it into a surface analogue of the
bulk Maxwell equation. Here, Ds is the vector of the electric displacement field on the surface.

As any novel phenomenological parameter εs needs an experimental verification, two of
us (TI and BR) recently studied the problem of nucleation in Langmuir monolayers at the
air–water interface by introducing surface excesses of the charge density and the dielectric
constant [6]. Thus, the difference in the surface polarizability of the heterogeneous surface
phases was taken into account with the help of a definition of surface dielectric constants for
each surface phase. The theory successfully described the suppression of the nucleation process
with the increase in the water electrolyte concentration as a polarization effect analogous to the
Thomson theory for 3D-phase transition [7].

In this paper we present results of a study of another system giving additional corroboration
of the relevance of the surface dielectric permittivity and, very importantly, that the fitting of
the theoretical curve to the experimental data yields expected values of the surfaces dielectric
constant.

The paper is organized as follows. In section 2 we shall come to a complete system of
equations describing the electrostatics of complex heterogeneous media with a new substantial
element, namely the introduction of a surface dielectric constant εs. Section 3 analyses the
effect of εs on the field of a point charge near the boundary of a semiconductor. The results of
this analysis are used to interpret the experimental data obtained and discussed elsewhere [8, 9].

2. General theory

Consider two bulk phases in contact with each other. Their bulk properties are not
homogeneous around the phase boundary even if both phases are homogeneous. To obtain the
real behaviour of some bulk quantity (say a) one must know the microscopic structure of the
boundary which is usually unknown. Therefore, Gibbs [1] suggested an approximate treatment
which amounts to the following. The real continuous behaviour of areal(z) (z is the coordinate
normal to the phase boundary, see figure 1) is replaced by an idealized quantity aideal(z) which
has a step-like behaviour across the phase boundary. The difference between the real and the
idealized quantity is ascribed to the interface surface as a surface (excess) quantity as defined
as follows:

as =
∫ ∞

−∞
[areal(z)− aideal(z)] dz. (1)
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Figure 1. Left panel: the real behaviour of some bulk quantity across the transition zone between
two bulk phases. Right panel: the idealized distribution of the quantity with a Gibbs phase boundary
between the bulk phases. The shaded area is proportional to the excess quantity as.
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Figure 2. Schematic of the system under consideration in the text.

Thus, the distribution of a in both bulk phases and the boundary is given by [10–12]

a(z) = a+θ(z)+ a−θ(−z)+ asδ(z), (2)

where a+ and a− are the idealized characteristics of the two bulk phases (in the simplest case
they are constants), θ(z) is the Heaviside step-function and δ(z) is the Dirac function. Examples
of widely used surface properties defined in this way are absorption as an excess of the bulk
concentration, surface viscosity as an excess of the bulk one, etc [13, 14].

Let us turn now to the derivation of the equations and the boundary conditions for the
electrostatic potential in a heterogeneous system. Let us assume that the phase boundary surface
is situated at z = 0 (figure 1). Following [12, 15] we assume the following expressions for the
charge density and the dielectric constant

ε(z) = ε+θ(z)+ ε−θ(−z)+ εsδ(z), (3)

ρ(z) = ρ+θ(z)+ ρ−θ(−z)+ ρsδ(z). (4)

Here, εs, ρs are the surface dielectric constant and the surface charge density defined via
equation (1) and ε±, ρ± are the corresponding quantities for the two bulk phases (situated
at z > 0 and z < 0). Also, the vector of the electric displacement field is given by [12]

D = D+θ(z)+ D−θ(−z)+ Dsδ(z). (5)

Assuming that the Maxwell equations are valid for the above singular field, the equations for
the electrostatic potential and the corresponding boundary conditions are obtained in the form

ε−�ϕ− = −ρ−
ε0
, (6)

ε+�ϕ+ = −ρ+
ε0
, (7)
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ε+
∂ϕ+
∂z

∣∣∣∣
z=0

− ε−
∂ϕ−
∂z

∣∣∣∣
z=0

+ εs�sϕs = −ρs

ε0
, (8)

ϕ−|z=0 = ϕ+|z=0 = ϕs. (9)

Here, ε0 is the permittivity of vacuum; the indexes ‘s’, ‘+’, ‘−’ are used to denote the
electrostatic potential at z = 0, z > 0, and z < 0, respectively. Equation (8), the classical
boundary condition for the jump of the normal component of the electrostatic displacement
field at the surface, is generalized as a Poisson equation on the surface, as it is modified with
the term εs�sϕ, which takes into account the surface polarization. The Laplacian �s is taken
only with respect to the surface coordinates. This approach is applicable to non-homogeneous
surfaces as well and one can define line excesses of the surface properties [15].

Using the definition (1), one can estimate the value of εs to be

εs =
∫ ∞

−∞
[εreal(z)− εideal(z)] dz ∼ εbulkδ, (10)

where εbulk is the bulk dielectric constant and δ is the width of the transition zone which is of
the order of the average interparticle distance. As shown at the end of the next section, this
theoretical estimation is confirmed by the fit to the experimental results.

3. Point charge on the semiconductor surface

The problem of the field caused by a point charge near the boundary of two continuous
media (figure 2) is usually given in the textbooks as a demonstration of the so-called image
forces [4]. Such systems have many other both fundamental and applied aspects and an
interesting phenomenon in this respect is the interaction between defects in semiconductors.
In [8], experimental determination of the electric potential around P vacancies on a In P(110)
surface is reported. To interpret the data from [8], Krc̆mar and Saslow (KS) studied a model
of this system with free surface charges [9]. The main features and assumptions in [9] are
as follows: (i) the approach is applicable to distances that exceed the atomic scale, i.e. only
the macroscopic parameters of the semiconductor are needed; (ii) the defects are treated as
point charges with charge +e [8]; (iii) an unspecified local relationship between the chemical
potential and the surface charge density is assumed; (iv) both bulk and surface charges are taken
into account in the calculation of the screening of the additional charge. KS solved the standard
electrostatic equations with the traditional boundary conditions and obtained the electrostatic
potential due to an isolated charge on the semiconductor surface. Their theoretical results are
in good agreement with the experimental data [8].

Our approach to the same problem is based on the model equations (6)–(9) where, as has
already been pointed out many times, the most important new moment is that the effect of
the surface polarization is taken into account. The first step is to define the charge density
distribution.

In the semiconductor (z < 0), the equilibrium density of free carriers with effective mass
m is given by the well-known expression [16, 17]

c(µ) = 2N�1/2(µ
∗) (11)

where N is the effective density of states

N = 2

(
2πmkT

(2π h̄)2

)1/2

(12)

(k is the Boltzmann constant and T is the temperature). �1/2(µ) is the Fermi–Dirac integral

�1/2(µ
∗) = 2

π

∫ ∞

0

√
x

1 + exp(x − µ∗)
dx (13)
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with µ∗ = µ/kT . The charge density ρ− is

ρ− = e[c(µ+ ϕ−)− c(µ)]. (14)

Here, e is the charge of the free carriers. We assume that the linear approximation holds and
develop the expression for ρ− in powers of ϕ− retaining only the linear term

ρ− = −ε0ε−κ2
−ϕ− (15)

where the inverse bulk screening length κ− is defined by the expression

κ2
− = e2 N

ε0ε−kT
�′

1/2(µ
∗). (16)

In the bulk of the semiconductor, the free carriers are holes with concentration p. The holes
form a non-degenerate gas and according to [16, 17]

κ2
− = e2 p

ε0ε−kT
. (17)

The surface carrier concentration � is introduced as a Gibbs excess using equation (1).
Consequently, the surface charge density is defined as

ρs = e[�(ϕs + ϕs,∞)− �(ϕs,∞)] (18)

where ϕs,∞ is the so-called surface potential [16]. In linear approximation, we obtain

ρs = −ε0εsκ
2
s ϕs (19)

and κ−1
s is the surface screening length. The expression for κs is given by

κ2
s = e2αcP

ε0εskT
(20)

where cP is the surface concentration of the phosphorus vacancies and α is a factor between
0 and 1 which measures the number of free surface carriers per phosphorus vacancy. As a
quantitative characteristic of the surface screening KS used the constant Ks0 [9] which is related
to our inverse surface screening length through the expression Ks0 ≡ εsκ

2
s .

Finally, the density of a point charge ρ+ in a vacuum is given by

ρ+ = q

2π
δ(z − z0)

δ(r)

r
. (21)

To obtain the potential due to a point charge on the semiconductor surface we let z0 → 0 in the
final expression (see below).

Next we solve the system equations (6)–(9) with the corresponding expressions for the
charge densities obtained above. The solution for the potential of a point charge on the
semiconductor surface (z0 = 0) is cast into the form

ϕ+(r, z) =
∫ ∞

0
ξψ̂se

−ξ z J0(ξr) dξ , (22)

ϕ−(r, z) =
∫ ∞

0
ξψ̂se

√
ξ 2+κ2−z J0(ξr) dξ, (23)

ϕs =
∫ ∞

0
ξψ̂s J0(ξr) dξ, (24)

where

ψ̂s = q

2πε0

1

ξ + ε−
√
ξ 2 + κ2− + εs(ξ 2 + κ2

s )

. (25)
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Figure 3. Surface potential ϕs of a point charge on the surface. The first four experimental points
(those with no fill) are not taken into account because at distances less than two lattice constants the
macroscopic theory is no longer valid.

Compared to the theoretical results of KS, equation (25) differs by the term εsξ
2 in the

denominator under the integral.
The numerical computations were performed with the following set of parameters. The

bulk hole concentration is 1.3–2.1 × 1018 cm−3 [8, 18]. The surface density of the phosphorus
vacancies is cP = 3.9×1016 m−2 [19]. For the bulk screening length R− = 1/κ− (at 297 K and
with ε− = 12.5) we used the value 3.2 nm. The surface dielectric constant εs and the parameter
α were used as fitting parameters.

The results of our calculation are shown in figure 3. The best fit gives the values
εs = 1.3 × 10−8 m and α = 0.36; the standard deviation is 0.0041. If εs = 0 we obtain
α = 0.27 with standard deviation 0.0048. If we use the estimation (10) for εs, the obtained
value for the width of the transition zone δ is of the order of one to two lattice constants (for
In P − 0.6 nm), which is a reasonable result. We must point out that in a different way Krc̆mar
and Saslow [9] have estimated α to be 0.40. They have assumed that the surface screening
dominates over the bulk one and the estimate for α was obtained by fitting the experimentally
inferred surface screening length 1.1 nm [8].

An important feature of our approach is the behaviour of the surface potential as r tends to
0. From equations (24) and (25) we obtain as r → 0

ϕs(r → 0) ≈ q

2πε0r

∫ ∞

0

J0(ξ)

r(1 + ε−)+ εsξ
dξ. (26)

The integral is performed to give the result [20]

ϕs(r → 0) ≈ q

2πε0r

π

2εs

[
H0

(
1 + ε−
εs

r

)
− Y0

(
1 + ε−
εs

r

)]
(27)

where H0(x) is the zeroth-order Struve function and Y0(x) is the zeroth-order Bessel function
of the second kind [21]. Finally, using the properties of these functions we obtain the r → 0
behaviour of ϕs

ϕs(r → 0) ≈ − q

2πε0εs
ln

(
1 + ε−
εs

r

)
. (28)

For comparison, according to the KS theory, ϕs ∼ 1/r as r → 0. One sees that the
inclusion of the surface dielectric constant drastically changes the behaviour of the electrostatic
potential near the point charge. This difference in the small-r behaviour of ϕs may seem
not very important as far as the experimental data for the potential of charged defects on a
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semiconductor surface is concerned. As shown in [8] the interaction between charged defects
less then two lattice constants apart is dominated by lattice relaxation and cannot be simply
described as interaction of point charges. Nevertheless, the approach we adopted in the present
work correctly takes into account the surface polarizability and has proved to be of crucial
importance for systems like thin films [12] or Langmuir monolayers [6] where it is the only
adequate approach.

In conclusion, we have developed a theory for the electrostatics of heterogeneous systems
with non-homogeneous phase boundaries based on the Gibbs approach. A surface dielectric
constant is introduced in order to take into account the intrinsic surface polarizability of the
phase boundary. The potential of a point charge on a semiconductor surface is computed
within this framework. The surface dielectric constant is determined by fitting to the existing
experimental results for the potential of charged defects on a semiconductor surface. Its value
is found to be of the correct order of magnitude.
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